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The Fracture Threshold for an Adhesive Interlayer 
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synopsis 
Complementing an earlier paper which utilized an energy balance criterion for a con- 

tinuum mechanics analysis of adhesive failure in a pressurized blister at the interface of 
an elastic material and a rigid substrate, the analysis is extended to include an additional 
elastic interlayer between them. An infinite lateral-length elastic plate strip bonded 
through a Winkler elastic foundation to a rigid substrate is assumed, in which the plate is 
separated from the adhesive layer by internal pressure. It is found that the important 
design parameters are the tensile modulus-to-thickness ratio of the adhesive layer and 
the adhesive fracture energy of separation of the respective materials. The results 
provide a basis for investigating changes in the chemical microstructure of the ad- 
hesive. 

INTRODUCTION 

One of the more important aspects of the adhesive debonding problem is 
the quantitative importance of the thickness and mechanical properties of 
the adhesive layer which lies between two adhering surfaces. Practical 
experience has indicated a significance, usually tending toward thin adhe- 
sive layers, but it appears that limited quantitative analysis of this phenom- 
enon has been furnished. Building upon the original specimen configura- 
tion suggested by Dannenberg’ and amplified in certain analytical respects 
by Malyshev and Salganik,2 the author has proposed a modified “pres- 
surized blister test” to treat the case of a soft elastomeric material cast, and 
cured, upon a relatively rigid sub~t ra te .~  In essence, a pressure inlet hole 
is drilled through the underside of the substrate and the applied pressure 
required to lift the layer off the surface, forming a blister and extending its 
radius, is measured. 

A Griffith-type criterion for adhesive fracture is adopted, wherein the 
change in internal strain energy stored in the layer with increasing blister 
size or radius is equated to the associated increment in the amount of energy 
absorbed in creating the newly fractured surface area. For the particular 
case of a linearly elastic plate-like disk cast against a rigid surface, it was 
found for example that the pressure, per, above which the blister would 
increase in size, was 
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where, in calculating the strain energy stored, linear plate theory? was 
used and h/a is the plate thickness-to-plate radius ratio, E and Y are the 
tensile modulus and Poisson's ratio of the material, and y. (in.-lb/in.2) is 
the specific adhesive fracture energy of the surface defined through the sur- 
face energy S, such that S = ?razya. Tests were run from which ya was 
deduced from measurements of the critical pressure at  a corresponding 
radius for known material properties. As a matter of fact, for a particular 
urethane rubber against glass, ya was found to be 1.4 in.-lb/in.2 Assuming 
the same materials and surface preparation in a different specimen codigu- 
ration, it was shown how this now known value of ya could be used to pre- 
dict, a priori, the adhesive debonding for a different applied loading. 

In  many cases however, one material is not cast and cured against the 
second material, but rather it is bonded to it by an intermediate, usually 
thin, layer of a different material. The aforementioned analysis does not 
specifically treat this important class of problems, and it is proposed to 
illustrate the modifications which can be adopted to do so. 

THE ELASTIC ADHESIVE INTERFACE 

As a model of the phenomenon involved, consider instead of a circular 
blister, an elastic plate strip of material properties E and v, and thickness 
h, infinite in the lateral y-direction (plane strain) and appearing in cross 
section essentially as a beam (Fig. 1). The plate specimen is mounted upon 
an interface elastic adhesive layer of material properties E' and v' and thick- 
ness h'. The substrate underneath the adhesive layer is considered in- 
finitely rigid, as before. From the standpoint of linear plate theory, the 

W. .? Plate Specimen 
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E: v: h' 

Fig. 1. Cross section of the configuration. 

problem can be formulated by assuming an equivalent Winkler elastic 
foundation6 modulus k ,  which leads then to a simple analysis of the classic 
beam supported by an elastic foundation. (I$ should be noted that the 
essential assumption introduced by Winkler6 allows for vertical motion 
and dilatation stress only. Shear effects in the foundation can be incor- 
porated, however.6) The deflection of the central portion of the strip, 
1x1 < a, loaded by pressure only, is then determined from standard beam 
theory which, for the outer portions, 1x1 > a (that supported by the elastic 
foundation), is found from the Winkler equation. The deflection, slope, 

t Jones and Selto have recently extended the analysis to include the case of a thin 
(nonlinear) membrane layer.' 
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moment, and shear are matched at  1x1 = a to complete the solution. 
essential details follow. 

equation is 

with the solution 

The 

For this region the governing differential The Inner Solution, 1x1 < a. 

D(d4U./dx4) =I p (2 )  

(3) 

In this region, the Winkler equation is 

Dw(z) = (px4/24) + (C2x2/2) + Co 

where the flexural rigidity is D = Eh3/ [12(1  - v2) 3. 
The Outer Solution, 1x1 > a. 

D(d4w/dx4) + kw = 0 

w(z) = (C3 cos h + C4 sin h) exp(-h) 

(4) 

(5 )  

with the solution 

where that part of the solution corresponding to exp(+h) has been 
neglected due to the assumed lateral infinite extent of the adhesive layer. 
The constant X is defined by 

k = 4DX4. ( 6 4  

It is also useful to define for later use the dimensionless parameters repre- 
senting the (damped) wavelength of the deformation in the foundation, 

p = Xu. (6b) 
The constants Co, Cz, C3, and C4 are determined by requiring that the 

deflection, slope, moment, and s h e a m ( a ) ,  dw(a)/dz, D(d2w/dx2), and 
D(d3w/dx3), respectively, for the inner and outer solutions match at x = a. 
An application of these conditions leads to 

cz = -pa{6 1 -k 6p(l 2 p + 3 1  + p) 

1 
1 

(2p2 + 6p + 3)  cosp + (2p2 - 3 )  sinp 
D exp(-Xu) 12P3(1 + PI  

(2p2 4- 6p + 3) sin p - (2p2 - 3 )  cos p 

D exp( - Xu) 12fi3(1 + /I> 

c1 = -~ 

c4 = 

ENERGY BALANCE 

With the constants now determined, the strain energy per unit lateral 
Using length stored in the various parts of the specimen can be calculated. 

Clapeyron’s the~rern,~ one finds that the energy in the plate is 
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whereupon using eq. (3), along with eqs. (7) and (€9, 

p2a6 { u = -  1 + -  (12) 
f 4p3 4- 12p2 + 18p + 9 

450 F3(1 + r> 

where the first term in the brackets may be identified as the elementary 
solution contributed by the central portion of the plate strip alone with 
clamped edges at 1x1 = a, i.e., /r + m . 

It is necessary next to calculate the increment in adhesive energy per 
unit lateral length to create new surface at the ends of the strip S. It is 
assumed that the debonding will take place along the interface between the 
plate and the adhesive layer and that the specific adhesive energy associated 
with the debonding is -ya. Thus one has 

s = 2a7, (13) 

The energy balance at criticality, dU/ba = dS/da, upon noting (6b), 
leads easily to 

9 3  (+) 
2 a  

16p4 + 5 6 ~ '  + 84~1' + 63p + 18 
4/r3(1+ pI2 

per' = 
1 +  

where the numerator is the clamped-clamped strip solution, i.e., p + m , 
given earlier (Williams13 Table I, formula 4). The second term in the de- 
nominator therefore represents the effect and presence of an elastic founda- 
tion, within the Winkler approximation, and is the desired correction factor 
for a finite-thickness adhesive bonding layer. 

It is useful to note that in many cases the parameter /r = Xu will be suf- 
ficiently large that the correction factor may be adequately represented by 

1 h 3 E  =-(-) 3 h 3 E y a  e[1--4J-(-) - +  
2 a  3 a ka (16) m 

Also, the foundation modulus k may be estimated from the characteris- 
tics of the adhesive layer. Assuming for the thin layer that its lateral 
strain is inhibited (ez = q, = 0) and that only normal strain is permitted, 
which is consistent with the Winkler hypothesis, one finds that the founda- 
tion constant relating applied normal pressure and deflection, w, is* 

1 - v' E' 
(1 - 2 Y ' )  (1 + Y') 77 k =  

* For a beam, rather than a plate strip, k = [ E ' / h ' ] / [ l  - v ' ~ ] .  
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which permits a direct evaluation of p = Xu, viz., 
4 

1 h (1 + v’) (1-2v’) &/h - .-. 
- a d ( 1  - v’) (1 - 9) E’/h’ 

1125 

For the case when the foundation is “stiff,” k - pl”+ , 

and the stiffer the adhesive layer, i.e., higher modulus or thinner layer, the 
higher the fracture strength. As a matter of fact, directly from eq. (16) 
one can find that 

1 Ak -. - 
Pcr “ - 2 p k  

DISCUSSION 

There are several points to be emphasized. First, the energy calcula- 
tions have been simplified by using linear elastic beam theory; large deflec- 
tions are not admissible in this solution. Second, a Wider-type elastic 
foundation, neglecting shear deformation and shear strain energy, has been 
used. Third, and most important, separation along the line between the 
plate and adhesive layer has been assumed. It is known that in many 
cases the fracture progresses into either the adhesive or parent material, in 
which case an alternative calculation is required. Furthermore, in the 
case that the adhesive layer thickness vanishes, k = , a uniform solution 
results as far as the continuum mechanics solution is concerned, i.e., eq. (14) 
with p = a. It is not clear from the microscopic point of view, however, 
that the adhesive fracture energy ya is the same for separation of the plate 
from the rigid base (p = w ) as for separation of the plate from the adhesive 
layer (p  Finally, it appears that the pri- 
mary engineering design quantity is neither the layer modulus E’ or the layer 
thickness h’ separately but, from eq. (20), the effective spring constant, or 
foundation modulus, k-(E’/h’), of the layer. The relative change of the 
fracture stress with spring constant is inversely proportional quantitatively 
to the dimensionless wave length p = Xu. 

Nevertheless, it is believed that the nature of the results reported herein, 
and in the process of being extended to circular blister-type plates18 is suf- 
ficiently quantitative to assess with fair accuracy the importance and trade- 
off between modulus and thickness of a vanishingly thin adhesive inter- 
layer, having as its upper limit in strength a value determined by the char- 
acteristic specific adhesive fracture energy of the mating surfaces. 

It is hoped that these quantitative approximations for adhesive fracture 
strength will stimulate polymer scientists to describe, a t  least on a phenom- 
enologic basis, those chemical structure parameters which affect the adhe- 

) ; indeed it is probably not. 
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sive surface energy. It would then permit the same type of association to 
be established as has been demonstrated between the fracture stress and 
microstructural factors affecting the modulus.8 In this way a complete 
link can be made between the macroscopic failure threshold and the chemi- . 
cal constitution of the microstructure, and ultimately improved adhesive 
strength. 
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